
A

Major Project

On

MORSECODE TRANSLATOR USING EYE BLINKS

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

C. Sainath(187R1A05C9)

G. Srikar(187R1A05E3)

I. Pranay Goud(187R1A05E8)

Under the Guidance of

 MRS. G. KAVITHA REDDY

 Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS
(Accredited by NAAC, NIRF, NBA, Permanently Affiliated to JNTUH, Approved by AICTE,

New Delhi) Recognized Under Section 2(f) & 12(B) of the UGC Act.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “MORSECODE TRANSLATOR USING

EYEBLINKS” being submitted by C.SAINATH(187R1A05C9), G.SRIKAR(187R1A05E3) &

I.PRANAY GOUD(187R1A05E8) in partial fulfillment of the requirements for the award of the

degree of B.Tech in Computer Science and Engineering to the Jawaharlal Nehru Technological

University Hyderabad, is a record of bonafide work carried out by him/her under our guidance and

supervision during the year 2021-22.

The results embodied in this thesis have not been submitted to any other University or Institute

for the award of any degree or diploma.

Mrs. G. Kavitha Reddy Dr. A. Raji Reddy

Assistant Professor DIRECTOR

INTERNAL GUIDE

Dr. K. Srujan Raju EXTERNAL EXAMINER

HOD

Submitted for viva voice Examination held on

ACKNOWLEGDEMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our gratitude to

the people who have been instrumental in the successful completion of this project.

We take this opportunity to express my profound gratitude and deep regard to my

guide Mrs. G. Kavitha Reddy, Assistant Professor for her exemplary guidance, monitoring and

constant encouragement throughout the project work. The blessing, help and guidance given by her

shall carry us a long way in the journey of life on which we are about to embark.

We also take this opportunity to express a deep sense of gratitude to Project Review

Committee (PRC) Mr. A. Uday Kiran, Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao, Mrs. G.

Latha, Mr. A. Kiran Kumar, for their cordial support, valuable information and guidance, which

helped us in completing this task through various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer Science and

Engineering for providing encouragement and support for completing this project successfully.

We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the course

of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy, Chairman for

providing excellent infrastructure and a nice atmosphere throughout the course of this project.

The guidance and support received from all the members of CMR Technical Campus who

contributed to the completion of the project. We are grateful for their constant support and help.

Finally, we would like to take this opportunity to thank our family for their constant

encouragement, without which this assignment would not be completed. We sincerely acknowledge

and thank all those who gave support directly and indirectly in the completion of this project.

C.SAINATH (187R1A05C9)

G.SRIKAR (187R1A05E3)

I.PRANAY GOUD (187R1A05E8)

i

 ABSTRACT

Morse code is a method used in telecommunication/communication to encode text

characters as standardized sequences of two different signal durations, called dots and

dashes, or dits and dahs. Morse Code encodes the 26 Latin letters a through z, one non-

Latin letter, the Arabic numerals, and a small set of punctuation and procedural signals

(prosigns). There is no distinction between upper and lower case letters. Each Morse code

symbol is formed by a sequence of dits and dahs. The dit duration is the basic unit of time

measurement in Morse code transmission. The duration of a dah is three times the

duration of a dit. Each dit or dah within an encoded character is followed by a period of

signal absence, called a space, equal to the dit duration. The letters of a word are

separated by a space of duration equal to three dits, and words are separated by a space

equal to seven dits.

ii

LIST OF FIGURES/TABLES

FIGURE NO FIGURE NAME PAGE NO

Figure 3.1 Project Architecture 8

Figure 3.2 Use case diagram 11

Figure 3.3 Class diagram 12

Figure 3.4 Sequence diagram 13

Figure 3.5 Activity diagram 14

iii

 LIST OF SCREENSHOTS

SCREENSHOT NO. SCREENSHOT NAME PAGE NO.

Screenshot 5.1 Face mesh landmarks 22

Screenshot 5.2 Left eye landmarks 23

Screenshot 5.3 Right eye landmarks 23

Screenshot 5.4 General morsecode 24

Screenshot 5.5 morsecode for hello, hello converted

to hindi

 24

Screenshot 5.6 morsecode for egg, egg converted to

telugu

 25

Screenshot 5.7 morsecode for welcome, welcome

converted to japanese

 25

iv

ABSTRACT i

LIST OF FIGURES ii

LIST OF SCREENSHOTS iii

1. INTRODUCTION 1

1.1 PROJECT SCOPE 1

1.2 PROJECT PURPOSE 1

1.3 PROJECT FEATURES 1

2. SYSTEM ANALYSIS 2

2.1 PROBLEM DEFINITION 2

2.2 EXISTING SYSTEM 3

2.2.1 DISADVANTAGES OF THE EXISTING SYSTEM 3

2.3 PROPOSED SYSTEM 4

2.3.1 ADVANTAGES OF PROPOSED SYSTEM 4

2.4 FEASIBILITY STUDY 5

2.4.1 ECONOMIC FEASIBILITY 5

2.4.2 TECHNICAL FEASIBILITY 6

2.4.3 BEHAVIORAL FEASIBILITY 6

2.5 HARDWARE & SOFTWARE REQUIREMENTS 7

2.5.1 HARDWARE REQUIREMENTS 7

2.5.2 SOFTWARE REQUIREMENTS 7

3. ARCHITECTURE 8

3.1 PROJECT ARCHITECTURE 8

3.2 ARCHITECTURE DESCRIPTION 9

3.3 MODULES DESCRIPTION 10

3.4 USE CASE DIAGRAM 11

3.5 CLASS DIAGRAM 12

3.6 SEQUENCE DIAGRAM 13

3.7 ACTIVITY DIAGRAM 14

 4. IMPLEMENTATION 15

4.1 SAMPLECODE

 5. SCREENSHOTS

15

15

22

6. TESTING 26

6.1 INTRODUCTION TO TESTING 26

6.2 TYPES OF TESTING 26

6.2.1 UNIT TESTING 26

6.2.2 INTEGRATION TESTING 26

6.2.3 FUNCTIONAL TESTING 27

 6.3 TESTCASES 27

6.3.1 TEST CASES DESCRIPTION 28

7. CONCLUSION & FUTURE SCOPE 29

7.1 PROJECT CONCLUSION 29

7.2 FUTURE SCOPE 29

8. BIBLIOGRAPHY 30

8.1 REFERENCES 30

8.2 GITHUB LINK 30

 9. JOURNAL

 v

1. INTRODUCTION

 MORSECODE TRANSLATOR USING EYEBLINKS

1. INTRODUCTION

 1.1 PROJECT SCOPE

This project is titled as “MorseCode Translator” this software provides the facility to

convert MorceCode into normal human readable language, this useds machine learning

methodologies and EAR(Eye Aspect Ratio) to calculate dits and dahs using predefined

facemesh model from mediapipe. So, this system is intended to provide an alternative

form of communication for people with disabilities and to convey confidential messages.

 1.2 PROJECT PURPOSE

The main purpose/objective of this project is to convert morsecode into english along

with other regional Indian languages like telugu, hindi etc. This will provide the feature

where user eliminates third person translator while conversing using morsecode, this

model finds dits and dahs by EAR value and time constrains given by the developer,

appends each character and converts English language into regional languages along with

speech. With this software, a person can express themselves faster and easier. It is

important to solve the problem for such people who can communicate with every person

in the world.

 1.3 PROJECT FEATURES

This project scheme was developed to increase the accuracy and to reduce the

amount of work for people who doesn’t know morsecode. It also helps minimize the

amount of time and money spent by removing third party translators. As everything is

digitalized and based on data analysis, it takes less amount of time to get results. Based

on the results, further action can be taken.

CMRTC 1

2. SYSTEM ANALYSIS

 MORSECODE TRANSLATOR USING EYEBLINKS

2. SYSTEM ANALYSIS

SYSTEM ANALYSIS

System Analysis is the important phase in the system development process. The

System is studied to the minute details and analyzed. The system analyst plays an

important role of an interrogator and dwells deep into the working of the present system.

In analysis, a detailed study of these operations performed by the system and their

relationships within and outside the system is done. A key question considered here is,

“what must be done to solve the problem?” The system is viewed as a whole and the

inputs to the system are identified. Once analysis is completed the analyst has a firm

understanding of what is to be done.

 2.1 PROBLEM DEFINITION

With this software, a person can express themselves faster and easier. It is important

to solve the problem for such people who can communicate with every person in the

world. As we saw in the current systems they are not easy with people who have spinal

cord injuries and all. Also, the efficiencies are not up to the mark for their current systems

available. Nowadays every other laptop has a camera, if not available then USB extended

cameras are also available. This component of the system is most costly whereas others

are inexpensive. This system will be very efficient for the people who can easily blink

their eyes and have some of the other physical disability. This system can be made more

accurate with pre defined face mesh model. Due to the technological advancement, its

scope is infinite we can completely make it voice activated and navigated.

 CMRTC 2

 MORSECODE TRANSLATOR USING EYEBLINKS

CMRTC 3

2.2 EXISTING SYSTEM

The manual analysis of complex-natured, is fairly a time-consuming and tedious process,

and could be prone to errors, For ages the morse code has been used by many

government officials during emergencies and when the normal means of communication

are not available, and it is also a type of sign language used by people to communicate.

We found some of the existing models like morse code translation using sound that works

on the principle of sound clicks. In this method, the person will communicate with his

eyes and another person need to convert it into sound (click) and that must be decoded

into human-understandable language. A few existing systems have devised different

representations (or) data patterns of 0’s and 1’s to represent a character. In this model

input is taken in form of eye blinks, short blink means a dit , long blink means dah.

 2.2.1 DISADVANTAGES OF EXISTING SYSTEM

 Third party translators are needed.

 Time consuming.

 Error prone or accuracy.

 MORSECODE TRANSLATOR USING EYEBLINKS

CMRTC 4

2.3 PROPOSED SYSTEM

In the proposed system we plan on using opencv, mediapipe to convert the morse code

that is done by using different eye blinks into simple text , MediaPipe offers open source

cross-platform, customizable ML solutions for live and streaming media.”, this definition

is from their own website and explains what you can do with that library shortly and

cleanly, they offer several other solutions that can run on different platforms and I’ll

explain all of them in a different post in the future. The feature that we’ll use today is

called “Face Mesh”, this solution provides us a face landmark map with the most

important 468 landmarks that can be seen in a human’s face. Using that map we’ll

calculate the ratio between some particular points in the face and with that information

we’ll detect if the person on the camera blinked or not. To be able to detect if an eye is

blinked or not we use “ear” ratio which stands for “eye aspect ratio” to be able to

calculate an eye’s “ear” value we need to access 6 landmarks at one’s face. The text is

then converted to other regional languages along with text and speech.

 2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

 Reduces costs.

 Accurate.

 Time saving.

 MORSECODE TRANSLATOR USING EYEBLINKS

CMRTC 5

 2.4 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put

forth with a very general plan for the project and some cost estimates. During system

analysis the feasibility study of the proposed system is to be carried out. This is to ensure

that the proposed system is not a burden to the company. Three key considerations

involved in the feasibility analysis are

• Economic Feasibility

• Technical Feasibility

• Social Feasibility

 2.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to ensure that

effort is concentrated on project, which will give best, return at the earliest. One of the

factors, which affect the development of a new system, is the cost it would require.

The following are some of the important financial questions asked during preliminary

investigation:

• The costs conduct a full system investigation.

• The cost of the hardware and software.

• The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of project work, there is no manual cost to spend

for the proposed system. Also, all the resources are already available, it gives an

indication of the system is economically possible for development.

 MORSECODE TRANSLATOR USING EYEBLINKS

 2.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the

technical requirements of the system. Any system developed must not have a high

demand on the available technical resources. The developed system must have a

modest requirement, as only minimal or null changes are required for

implementing this system.

 2.4.3 BEHAVIORAL FEASIBILITY

 This includes the following questions:

 Is there sufficient support for the users?

 Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives when

developed and installed. All behavioral aspects are considered carefully and

conclude that the project is behaviorally feasible.

CMRTC 6

 MORSECODE TRANSLATOR USING EYEBLINKS

 2.5 HARDWARE & SOFTWARE REQUIREMENTS

 2.5.1 HARDWARE REQUIREMENTS:

 For developing the application, the following are the Hardware Requirements:

 Processor : intel i5 10th generation

 RAM : 4GB

 Hard Disk : 10GB

 Input Device : Standard keyword and Mouse, HD webcam

 Output Device : VGA and high resolution monitor, speaker

 2.5.2 SOFTWARE REQUIREMENTS:

For developing the application, the following are the Software Requirements:

 Operating system : windows 10

 Anaconda with python3

 Spyder/Jupyter Notebook

 Open cv

 MediaPipe

 Gtts

 Play Sound

 Goggletrans

CMRTC 7

3. ARCHITECTURE

 MORSECODE TRANSLATOR USING EYEBLINKS

3. ARCHITECTURE

 3.1 PROJECT ARCHITECTURE

Figure 3.1: Project Architecture of Morse Code Translator

CMRTC 8

 MORSECODE TRANSLATOR USING EYEBLINKS

 3.2 ARCHITECTURE DESCRIPTION

Input:

 Input can be taken using a camera or a video, for taking input we use opencv

software .

Mediapipe facemesh model:

 The input is processed here, that is face mesh model is applied on face for

calculating EAR

Calculate EAR1 and EAR2:

EAR1 and EAR2 are calculated for both eyes based on the formula taken.

Short blink or long blink:

 If EAR value is less than threshold then it’s a blink, calculate time interval to find

whether it’s a dit or dah.

Append dits and dahs:

 Append all dits and dahs to form a sequence.

Morse code:

 Here the actual morcecode and sequence language are present in map data structure,

map the sequence taken and find appropriate alphabet.

Append English characters to output string:

 Now each character is appended to the output value to form a word, this word in

turn converted to other languages and speech.

CMRTC 9

 MORSECODE TRANSLATOR USING EYEBLINKS

CMRTC 10

 3.3 MODULES DESCRIPTION

MODULE-1 (Input pre-processing)

Take input from a webcam or a video using opencv, convert the BGR input to RGB

input, pass it to Media pipe Facemesh Model.

MODULE-2 (EAR calculation)

Mediapipe detects face and maps landmarks, calculate ear1 and ear 2 based on the

landmarks, initialize count.

MODULE-3 (Dit or Dah)

 If count is 0 then add a value else if count==10 count=0, check ear 1 and ear2, if

both of them are less than threshold value then its blink, based on fps find whether its a

short blink or long blink, append the value to the string.

MODULE-4 (Output)

If blinking stopped then, if there is character matching then append it to output word,

array, and then convert it to the string, convert the string from English to any other

language using gtts, print the output.

 MORSECODE TRANSLATOR USING EYEBLINKS

CMRTC 11

 3.4 USECASE DIAGRAM

A use case is a set of scenarios that describing an interaction between a user and a

system. A use case diagram displays the relationship among actors and use cases. The two main

components of a use case diagram are use cases andactors.

Actors in use case diagram are:

 Speaker

 Listener

Figure 3.2: Use Case Diagram for user for MorseCode Translator

 MORSECODE TRANSLATOR USING EYEBLINKS

CMRTC 12

 3.5 CLASS DIAGRAM

Class Diagram is a collection of classes and objects.

Figure 3.3: Class Diagram for MorseCode Translator

 MORSECODE TRANSLATOR USING EYEBLINKS

 3.6 SEQUENCE DIAGRAM

Sequence diagrams in UML shows how object interact with each other and the order those

interactions occur. It’s important to note that they show the interactions for a particular scenario.

The processes are represented vertically and interactions are show asarrows.

Figure 3.4: Sequence Diagram for MorseCode Translator

CMRTC 13

CMRTC 14

 MORSECODE TRANSLATOR USING EYEBLINKS

3.7 ACTIVITY DIAGRAM

It describes about flow of activity states.

Figure 3.5: Activity Diagram for MorseCode Translator

4. IMPLEMENTATION

 MORSECODE TRANSLATOR USING EYEBLINKS

 4.1 Code:

import cv2

import mediapipe as mp

import time

import utils

import math

def rescaleFrame(frame, percent=75):

 width = int(frame.shape [1]* percent/ 100)

 height = int(frame.shape [0] * percent/ 100)

 dim = (width, height)

 return cv2. resize(frame, dim)

def ld(img,results,draw=False):

 img_h,img_w=img.shape[:2]

 mesh_coord=[(int(point.x *img_w),int(point.y *img_h)) for point in

results.multi_face_landmarks[0].landmark]

 if draw :

 [cv2.circle(img,p,2,(0,255,0),-1) for p in mesh_coord]

 return mesh_coord

cap = cv2.VideoCapture(0)

pTime=0

mp_draw = mp.solutions.drawing_utils

mp_facemesh = mp.solutions.face_mesh

facemesh=mp_facemesh.FaceMesh(max_num_faces=1)

draw_spec=mp_draw.DrawingSpec(thickness=1, circle_radius=2)

ear1prev=[]

ear2prev=[]

CMRTC 15

 MORSECODE TRANSLATOR USING EYEBLINKS

wordArray = []

isLong = False

blinkedFor = 0

notBlinkedFor = 0

wasBlinked = False

letterArray =""

letterIs=""

MorseCode = {

"SL": "A" ,

"LSSS":"B",

"LSLS": "C",

"LSS": "D",

"S": "E",

"SSLS": "F",

"LLS": "G",

"SSSS":"H",

CMRTC 16

 MORSECODE TRANSLATOR USING EYEBLINKS

"SS": "I",

"SLLL": "J",

"LSL": "K",

"SLSS": "L",

"LL": "M",

"LS": "N",

"LLL": "O",

"SLLS": "P",

"LLSL": "Q",

"SLS": "R",

"SSS": "S",

"L": "T",

"SSL": "U",

"SSSL": "V",

"SLL": "W",

CMRTC 17

 MORSECODE TRANSLATOR USING EYEBLINKS

"LSSL": "X",

"LSLL": "Y",

"LLSS": "Z"}

while True:

 success, img = cap.read()

 try:

 scaled=rescaleFrame (img, 150)

 imgRGB=cv2.cvtColor(scaled, cv2.COLOR_BGR2RGB)

 results = facemesh.process (imgRGB)

 except:

 break

 cTime = time.time()

 while cTime==0 or pTime==cTime:

 cTime=time.time()

 fps = 1/(cTime-pTime)

 pTime = cTime

 count = 0

 if results.multi_face_landmarks:

 m_c=ld(img,results,True)

 cv2.imshow("image",img)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 if results.multi_face_landmarks:

 for faceLm in results.multi_face_landmarks:

 mp_draw.draw_landmarks(scaled, faceLm,

mp_facemesh.FACEMESH_CONTOURS, draw_spec, draw_spec)

CMRTC 18

 MORSECODE TRANSLATOR USING EYEBLINKS

 ear1=abs((faceLm.landmark [160].x-faceLm.landmark[144].x)**2-

(faceLm.landmark[160].y-faceLm.landmark [144].y)**2)+abs((faceLm.landmark[158].x-

faceLm.landmark[153].x)**2-(faceLm.landmark[158].y-faceLm.landmark[153].y)**2

)/abs(((faceLm.landmark[33].x-faceLm.landmark[133].x)**2)-((faceLm.landmark[33].y-

faceLm.landmark[133].y)**2))

 ear2= abs((faceLm.landmark [385].x-faceLm.landmark[380].x)**2-

(faceLm.landmark[385].y-faceLm.landmark [380].y)**2)+abs ((faceLm.landmark[387].x-

faceLm.landmark[373].x)**2-(faceLm.landmark[387].y-faceLm.landmark[373].y)**2

)/abs(((faceLm.landmark[362].x-faceLm.landmark[263].x)**2)-

((faceLm.landmark[362].y-faceLm.landmark[263].y)**2))

 #print("ears")

 #print(ear1,ear2)

 if count>10:

 count=0

 else:

 count=count +1

 if len(ear1prev) >10:

 ear1prev[count] = ear1

 isLong = True

 else:

 ear1prev.append(ear1)

 if len(ear2prev) >10:

 ear2prev[count] = ear2

 isLong=True

 else:

 ear2prev.append(ear2)

 if isLong:

 if((ear1prev[abs(count-9)]*0.68>ear1) and (ear2prev[abs(count-9)]*0.68>ear2)):

 wasBlinked = True

 #print("blink")

CMRTC 19

 MORSECODE TRANSLATOR USING EYEBLINKS

 blinkedFor=blinkedFor+1

 else:

 #print("bf",blinkedFor,fps,(fps*.7),int(fps/6.8))

 if (blinkedFor>(fps*.7)):

 print("LONG blink")

 letterArray = letterArray+ "L"

 blinkedFor=0

 elif(blinkedFor>int(fps/6.8)):

 print("SHORT blink")

 letterArray=letterArray + "S"

 blinkedFor=0

 else:

 notBlinkedFor=notBlinkedFor+1

 #print("no blink")

 if (notBlinkedFor>fps*2):

 print(letterArray)

 if letterArray in MorseCode:

 letterIs=MorseCode[letterArray]

 wordArray.append(letterIs)

 print(wordArray)

 letterArray=""

 letterArray=""

 notBlinkedFor=0

cap.release()

cv2.destroyAllWindows()

CMRTC 20

 MORSECODE TRANSLATOR USING EYEBLINKS

out=""

for i in wordArray:

 out+=i

print(out)

from googletrans import Translator

from gtts import gTTS

from playsound import playsound

translator = Translator()

t=translator.translate(text=out,src="en",dest="hi")

print(t)

speak = gTTS(text=t.text, lang="hi", slow=False)

print(speak)

speak.save("D:\\captured_voice1.mp3")

playsound("D:\\captured_voice1.mp3")

CMRTC 21

5. SCREENSHOTS

 MORSECODE TRANSLATOR USING EYEBLINKS

 5.1 Face mesh landmarks

 CMRTC 22

 MORSECODE TRANSLATOR USING EYEBLINKS

 5.2 Left eye landmarks

 5.3 Right eye landmarks

 CMRTC 23

 MORSECODE TRANSLATOR USING EYEBLINKS

 5.4 General morsecode

 5.5 morsecode for hello, hello converted to hindi

 CMRTC 24

 MORSECODE TRANSLATOR USING EYEBLINKS

 5.6 morsecode for egg, egg converted to telugu

 5.7 morsecode for welcome, welcome converted to japanese

CMRTC 25

 6. TESTING

 MORSECODE TRANSLATOR USING EYEBLINKS

 6. TESTING

 6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover

every conceivable fault or weakness in a work product. It provides a way to check the

functionality of components, subassemblies, assemblies and/or a finished product. It is the

process of exercising software with the intent of ensuring that the Software system meets its

requirements and user expectations and does not fail in an unacceptable manner. There are

various types of test. Each test type addresses a specific testing requirement.

6.2 TYPES OF TESTING

 6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal program logic

is functioning properly, and that program inputs produce valid outputs. All decision branches

and internal code flow should be validated. It is the testing of individual software units of the

application it is done after the completion of an individual unit before integration. This is

structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform

basic tests at the component level and test a specific business process, application, and/or

system configuration. Unit tests ensure that each unique path of a business process performs

accurately to the documented specifications and contains clearly defined inputs and expected

results.

 6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to determine if they

actually run as one program. Testing is event-driven and is more concerned with the basic

outcome of screens or fields. Integration tests demonstrate that although the components were

individually satisfied, as shown by successful unit testing, the combination of components is

correct and consistent. Integration testing is specifically aimed at exposing the problems that

arise from the combination of components.

CMRTC 26

 MORSECODE TRANSLATOR USING EYEBLINKS

 6.2.3. FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are available as

specified by the business and technical requirements, system documentation, and user manuals.

 Functional testing is centered on the following items:

 Valid Input : Identified classes of valid input must be accepted.

 Invalid Input : Identified classes of invalid input must be rejected.

 Functions : Identified functions must be exercised.

 Output : identified classes of application outputs must be exercised.

 Systems/Procedures : interfacing systems or procedures must be invoked.

The organization and preparation of functional teats are focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining identifying

Business process flows; data fields, predefined processes.

 6.3. TEST CASE

Test case ID Test case name Purpose Input Output

1 Test Case 1 To translate

Morse code into

Speak able

language

 .

 _ _ .

 _ _ .

EGG

In Telugu

(text=గుడ్డు,

pronunciation=Guḍḍu),

MP3 FILE

2 Test Case 2 To translate

Morse code into

Speak able

language

 . _ _

 .

 . _ . .

 _ . _ .

 _ _ _

 _ _

 .

WELCOME,

In Japanese

(text=ようこそ,

pronunciation=Yōkoso,

MP3 FILE

3 Test Case 3 To translate

Morse code into

Speak able

language

 .

 . _ . .

 . _ . .

 _ _ _

HELLO,

In Hindi

(text=नमसे्त,

pronunciation=namast

e),
MP3 FILE

CMRTC 27

 MORSECODE TRANSLATOR USING EYEBLINKS

6.3.1 TEST CASE DESCRIPTION

TEST CASE 1 : When we give input the code try’s to translate it into ENGLISH and then to

other specified Language along with speech i.e to EGG and గుడ్డు .

TEST CASE 2 : When we give input the code try’s to translate it into ENGLISH and then to

other specified Language along with speech i.e to WELCOME and ようこそ.

TEST CASE 3 : When we give input the code try’s to translate it into ENGLISH and then to

other specified Language along with speech i.e to HELLO and नमसे्त.

CMRTC 28

7. CONCLUSION

 MORSECODE TRANSLATOR USING EYEBLINKS

 7. CONCLUSION & FUTURE SCOPE

 7.1. PROJECT CONCLUSION

 The existing system was quite complicated and people working on this system must have to

remember a lot.

 Whereas our system has resolved the complicated issues and added predictive power to it.

 Here we translate not only with one language; we can translate to more regional languages and

converting the generated text into the speech.

7.2. FUTURE SCOPE

 Can improve accuracy by improving the model.

 Can make it more dynamic by using any angle of face to the camera.

 Can be used to implement a GUI application.

CMRTC 29

8. BIBLIOGRAPHY

 MORSECODE TRANSLATOR USING EYEBLINKS

 8. BIBLIOGRAPHY

 8.1 GITHUB LINK

 https://github.com/sainathchp/major-project

 https://github.com/srikar5710/major-project

 https://github.com/pranay-root/my-project

8.2 REFERENCES

[1] https://www.jetir.org/papers/JETIR2105194.pdf

 [2] https://google.github.io/mediapipe/solutions/face_mesh#python-solution-api

 [3] www.wikipedia.com/

CMRTC 30

https://github.com/sainathchp/major-project
https://github.com/srikar5710/major-project
https://www.jetir.org/papers/JETIR2105194.pdf
https://google.github.io/mediapipe/solutions/face_mesh#python-solution-api
http://www.wikipedia.com/
http://www.wikipedia.com/

 9. JOURNAL

10 VI June 2022

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VI June 2022- Available at www.ijraset.com

2705 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Morse code Translator Using Eye Blinks

Kavitha Reddy Guda1, Sainath Cheparthy2, Srikar Gangipally3, Pranay Goud Iruvuri4

1, 2, 3, 4Department of Computer Science and Technology, CMR Technical Campus, Medchal , 501401

Abstract: A Morse code Translator which translates Morse code into speech and text of any language chosen by the user, Morse
code is given as input ,it can be either a recorded video or live feed of a person who is blinking eyes in a sequence .OpenCV is
used to take Morse code input ,Mediapipe a google api detects face and maps facial landmarks, These landmarks are used to
map various eye co-ordinates and then considered to formulate Eye Aspect ratios ,which in turn determines eye blink .Morse
code which has been already loaded in the form of dictionary is going to map with the morse code given through video or cam
,and find the Alphabet assigned to it.

I. INTRODUCTION
Communication is a process which is essential in day-to-day life for a person, every person has needs to communicate with people,
the mode of communication can be any, it can be either speech, text, signs Etcetera. People communicate using any of the modes
mentioned, but some persons are disable, disability can be of many forms like deaf, dumb, blind Etcetera. Disability can be caused
due to many reasons, from birth or other medical conditions so every communication mode is not Feasible for every person or the
person with whom he/she is trying to communicate.
Also, some people want to communicate in secret so that they can pass messages to specified person in presence of third person who
will have no knowledge about that mode, this can be done using Morse code. Morse code is a communication process that uses two
distinct signal durations to encode text characters.
In the Morse code there are 26 letters from a to z, one non-Latin letter, numbers, and a small set of punctuations and procedures
(signs). Morse code is not case sensitive.
Morse code is accompanied with sequence of dits and dahs. Morse code transmission is measured by dit durations. dah is generally
three times longer than a dit. Normally, after each dit or dah in an encoded character, there is a signal absence, called a space, which
is equal to the dit duration.
There is a space of duration equal to three dots between each letter of a word, and seven dots separate words Morse code can be
memorised and sent in a form that is apparent to human senses, such as sound waves or visible light, eye blinks, so that it can be
directly deciphered by people who have learned the technique. Morse code is frequently communicated through an information-
carrying medium such as visible light, radio waves, or sound waves, which is keyed on and off in sequence. The current or wave is
present during the dit or dah's duration and missing between dits and dah's duration. As mentioned, we are using Eye blinks to
communicate through Morse code, A short blink is a dit and a long blink is a dah and sequence of the is an alphabet these alphabets
together form a word. Jeremiah Andrew Denton Jr. (July 15, 1924 – March 28, 2014) was an American politician and military
officer, while answering questions Denton blinked his eyes in Morse code, spelling the word "T O R T U R E" and sent a secret
message through his eyes to his US NAVAL peers. This example shows how one can use Morse code in many situations. but one to
receive it and understand message given in morse code must know morse code, but now one can simply use this software upload the
video and convert the morse code to text, speech and also into any other language they know this software allows users to translate
morse code in an efficient, user friendly and cost-effective manner.

II. LITERATURE REVIEW
Technology has a wide area which updates day by day, there are various technologies used to convert various forms of morse codes,
sign languages Etcetera. there are a lot of projects which detect faces and eye blinks. Morse code translation can be done can be
done using may technologies some of the projects are

1) Using CNN (Convolutional Neural Network) or MTCNN (Multi-Task Cascaded Convolutional Neural Network) which in turn

uses three different layers.
2) Using openCV and tree-based algorithms.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VI June 2022- Available at www.ijraset.com

2706 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

III. PROPOSED MODEL
A. Approach
Our approach is by using mediapipe and openCV. Mediapipe is a google api offers cross-platform, customizable ML solutions for
live and streaming media. There are various ML solutions available such as Face Mesh model, Object-detection, pose, hands,
holistic, Box tracking and many more. Face Mesh Model is a model which is used frequently by developers. Face Mesh model
allows users to map 468 3D landmarks upon a face. Bringing real-time augmented reality (AR) applications, a transform module
bridges the gap between face landmark estimation and useful AR applications that are commonly used in everyday life.
Steps
1) Connect your cam to OpenCV and load the live input or give already recorded video
2) Apply mediapipe’s face mesh model on input and initialize Morse code
3) Calculate initial EAR’s (Eye Aspect ratios)
4) Check if the EAR’s values are less than the threshold value
5) If yes that’s a blink, then find out whether it’s a long or short blink based on duration
6) Append dits and dahs to create a sequence
7) Map matching character for the sequence
8) Append the character to a string to form a word
9) Translate word string and convert it into speech

Fig 1: Live feed of a person communnicating in morse code

B. Modules
1) EAR Formulation: EAR (Eye Aspect Ratio) can be calculated by below formula where each point represents landmark of eye’s

X and Y co-ordinate. The total points for each eye is six since we are considering two vertical lines and two horizontal lines.

Fig 2: EAR Formula

Where , (p1,p2),(p3,p4) are 2 vertical lines anf (p5,p6) is horzontal line.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VI June 2022- Available at www.ijraset.com

2707 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

2) Determining Blinks and No Blinks: A comparison is made between the ear values of two eyes. the threshold value is calculated
Using a formula which contains previous and current time values. if the EAR is less than Threshold then is a blink, else it isn’t a
blink. It is determined by the duration of the blink whether it is a long blink or a short blink.

3) Mapping Morse Code: The dits and dahs are then attached once the blinks have been found, this sequence maps with the Morse
code in the software if it’s a match then mapped character is append to word string and when user stops the program the word
string is converted to speech and text as selected by the user.

Fig 3:Internatonal Morse code

IV. RESULT AND ANALYSIS

This program gives speech and text which is understandable by a normal human language, as chosen by user. Assuming the user
selects Hindi as the language, the program will translate the word into Hindi text and speech and play the sound using the play
sound library. If the word is not a valid one then it takes nearest possible word.

Fig 4:Final result

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VI June 2022- Available at www.ijraset.com

2708 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

V. CONCLUSIONS
It has been shown that the Eye Aspect ratio is effective at detecting blinks, compared to the traditional method of detecting blinks.
For people who are paralyzed or disabled but still have some eye movement, Morse code blink detection can be very useful. Blink
detection can be improved with the algorithms and techniques discussed. For these blinks, Morse code conversion is also in progress.
Those who are unable to normally communicate may be able to use this method as a means of communicating with those who
doesn’t have knowledge in Morse code.

REFERENCES

[1] Alternative Voice Communication Device using Eye Blink Detection for people with Speech Disorders Srividhya G, Murali S, A. Keerthana, Jaya Rubi
[2] BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik Raveendran, Matthias

Grundmann
[3] Supervised Transformer Network for Efficient Face Detection Dong Chen, Gang Hua, Fang Wen, Jian Sun
[4] Attention Mesh: High-fidelity Face Mesh Prediction in Real-time I. Grishchenko, Artsiom Ablavatski, Y. Kartynnik, Karthik Raveendran, Matthias

Grundmann
[5] Morse Codes Enter Using Finger Gesture Recognition Ricky Li, Minh Nguyen, Wei Qi Yan Department of Computer Science Auckland University of

Technology, Auckland, 1010 New Zealand.
[6] Real-Time Eye Blink Detection using Facial Landmarks Tereza Soukupova and Jan ´ Cech • Center for Machine Perception, Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague
[7] A Novel Method for Eye Tracking and Blink Detection in video frames Leo Pauly, Deepa Sankar Division of Electronics and Communication Engineering

School of Engineering Cochin University of Science and Technology

It
 i

s
h

er
e

b
y

ce
rt

if
ie

d
 t

h
a

t
th

e
p

a
p

er
 I

D
 :

 I
JR

A
S

E
T

4
4
5
3

6
,
en

ti
tl

ed

M
o

rs
e

co
d

e
T

ra
n
sl

a
to

r
U

si
n

g
 E

ye
 B

li
n

ks

b
y

 S
a

in
a
th

 C
h

ep
a
rt

h
y

a
ft

er
 r

ev
ie

w
 i

s
fo

u
n
d

 s
u

it
a
b

le
 a

n
d

 h
a
s

b
ee

n

p
u
b

li
sh

ed
 i

n
 V

o
lu

m
e

1
0

,
Is

su
e

V
I,

 J
u
n

e
2

0
2

2

in

In
te

rn
a

ti
o
n

a
l

Jo
u

rn
a

l
fo

r
R

es
ea

rc
h

 i
n

 A
p
p

li
ed

S
ci

en
ce

 &
 E

n
g

in
ee

ri
n

g
 T

ec
h
n
o

lo
g

y

G
o
o

d
 l

u
ck

 f
o

r
yo

u
r

fu
tu

re
 e

n
d
ea

vo
rs

It
 i

s
h

er
e

b
y

ce
rt

if
ie

d
 t

h
a

t
th

e
p

a
p

er
 I

D
 :

 I
JR

A
S

E
T

4
4
5
3

6
,

en
ti

tl
ed

M
o

rs
e

co
d

e
T

ra
n
sl

a
to

r
U

si
n

g
 E

ye
 B

li
n

ks

b
y

S
ri

ka
r

G
a

n
g
ip

a
ll

y
a

ft
er

 r
ev

ie
w

 i
s

fo
u

n
d

 s
u

it
a
b

le
 a

n
d

 h
a
s

b
ee

n

p
u
b

li
sh

ed
 i

n
 V

o
lu

m
e

1
0

,
Is

su
e

V
I,

 J
u
n

e
2

0
2

2

in

In
te

rn
a

ti
o
n

a
l

Jo
u

rn
a

l
fo

r
R

es
ea

rc
h

 i
n

 A
p
p

li
ed

S
ci

en
ce

 &
 E

n
g

in
ee

ri
n

g
 T

ec
h
n
o

lo
g

y

G
o
o

d
 l

u
ck

 f
o

r
yo

u
r

fu
tu

re
 e

n
d
ea

vo
rs

It
 i

s
h

er
e

b
y

ce
rt

if
ie

d
 t

h
a

t
th

e
p

a
p

er
 I

D
 :

 I
JR

A
S

E
T

4
4
5
3

6
,

en
ti

tl
ed

M
o

rs
e

co
d

e
T

ra
n
sl

a
to

r
U

si
n

g
 E

ye
 B

li
n

ks

b
y

P
ra

n
a

y
G

o
u

d
 I

ru
vu

ri

a
ft

er
 r

ev
ie

w
 i

s
fo

u
n
d

 s
u

it
a
b

le
 a

n
d

 h
a
s

b
ee

n

p
u
b

li
sh

ed
 i

n
 V

o
lu

m
e

1
0

,
Is

su
e

V
I,

 J
u
n

e
 2

0
2

2

in

In
te

rn
a

ti
o
n

a
l

Jo
u

rn
a

l
fo

r
R

es
ea

rc
h

 i
n

 A
p
p

li
ed

S
ci

en
ce

 &
 E

n
g

in
ee

ri
n

g
 T

ec
h
n
o

lo
g

y

G
o
o

d
 l

u
ck

 f
o

r
yo

u
r

fu
tu

re
 e

n
d
ea

vo
rs

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (1)
	1.2 PROJECT PURPOSE
	1.3 PROJECT FEATURES

	2. SYSTEM ANALYSIS
	2. SYSTEM ANALYSIS
	SYSTEM ANALYSIS
	2.1 PROBLEM DEFINITION
	2.3 PROPOSED SYSTEM
	2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM
	2.4 FEASIBILITY STUDY
	2.4.1 ECONOMIC FEASIBILITY
	2.4.2 TECHNICAL FEASIBILITY
	2.4.3 BEHAVIORAL FEASIBILITY
	2.5 HARDWARE & SOFTWARE REQUIREMENTS
	For developing the application, the following are the Hardware Requirements:
	For developing the application, the following are the Software Requirements:

	3. ARCHITECTURE
	3. ARCHITECTURE
	3.1 PROJECT ARCHITECTURE
	3.2 ARCHITECTURE DESCRIPTION
	3.4 USECASE DIAGRAM
	3.5 CLASS DIAGRAM
	3.6 SEQUENCE DIAGRAM
	3.7 ACTIVITY DIAGRAM

	4. IMPLEMENTATION
	4.1 Code:
	import cv2
	import mediapipe as mp
	import time
	import utils
	import math
	def rescaleFrame(frame, percent=75):
	width = int(frame.shape [1]* percent/ 100)
	height = int(frame.shape [0] * percent/ 100)
	dim = (width, height)
	return cv2. resize(frame, dim)
	def ld(img,results,draw=False):
	img_h,img_w=img.shape[:2]
	mesh_coord=[(int(point.x *img_w),int(point.y *img_h)) for point in results.multi_face_landmarks[0].landmark]
	if draw :
	[cv2.circle(img,p,2,(0,255,0),-1) for p in mesh_coord]
	return mesh_coord
	cap = cv2.VideoCapture(0)
	pTime=0
	mp_draw = mp.solutions.drawing_utils
	mp_facemesh = mp.solutions.face_mesh
	facemesh=mp_facemesh.FaceMesh(max_num_faces=1)
	draw_spec=mp_draw.DrawingSpec(thickness=1, circle_radius=2)
	ear1prev=[]
	ear2prev=[]
	wordArray = []
	isLong = False
	blinkedFor = 0
	notBlinkedFor = 0
	wasBlinked = False
	letterArray =""
	letterIs=""
	MorseCode = {
	"SL": "A" ,
	"LSSS":"B",
	"LSLS": "C",
	"LSS": "D",
	"S": "E",
	"SSLS": "F",
	"LLS": "G",
	"SSSS":"H",
	"SS": "I",
	"SLLL": "J",
	"LSL": "K",
	"SLSS": "L",
	"LL": "M",
	"LS": "N",
	"LLL": "O",
	"SLLS": "P",
	"LLSL": "Q",
	"SLS": "R",
	"SSS": "S",
	"L": "T",
	"SSL": "U",
	"SSSL": "V",
	"SLL": "W",
	"LSSL": "X",
	"LSLL": "Y",
	"LLSS": "Z"}
	while True:
	success, img = cap.read()
	try:
	scaled=rescaleFrame (img, 150)
	imgRGB=cv2.cvtColor(scaled, cv2.COLOR_BGR2RGB)
	results = facemesh.process (imgRGB)
	except:
	break
	cTime = time.time()
	while cTime==0 or pTime==cTime:
	cTime=time.time()
	fps = 1/(cTime-pTime)
	pTime = cTime
	count = 0
	if results.multi_face_landmarks:
	m_c=ld(img,results,True)
	cv2.imshow("image",img)
	if cv2.waitKey(1) & 0xFF == ord('q'):
	break (1)
	if results.multi_face_landmarks: (1)
	for faceLm in results.multi_face_landmarks:
	mp_draw.draw_landmarks(scaled, faceLm, mp_facemesh.FACEMESH_CONTOURS, draw_spec, draw_spec)
	ear1=abs((faceLm.landmark [160].x-faceLm.landmark[144].x)**2-(faceLm.landmark[160].y-faceLm.landmark [144].y)**2)+abs((faceLm.landmark[158].x-faceLm.landmark[153].x)**2-(faceLm.landmark[158].y-faceLm.landmark[153].y)**2)/abs(((faceLm.land...
	ear2= abs((faceLm.landmark [385].x-faceLm.landmark[380].x)**2-(faceLm.landmark[385].y-faceLm.landmark [380].y)**2)+abs ((faceLm.landmark[387].x-faceLm.landmark[373].x)**2-(faceLm.landmark[387].y-faceLm.landmark[373].y)**2)/abs(((faceLm.la...
	#print("ears")
	#print(ear1,ear2)
	if count>10:
	count=0
	else:
	count=count +1
	if len(ear1prev) >10:
	ear1prev[count] = ear1
	isLong = True
	else: (1)
	ear1prev.append(ear1)
	if len(ear2prev) >10:
	ear2prev[count] = ear2
	isLong=True
	else: (2)
	ear2prev.append(ear2)
	if isLong:
	if((ear1prev[abs(count-9)]*0.68>ear1) and (ear2prev[abs(count-9)]*0.68>ear2)):
	wasBlinked = True
	#print("blink")
	blinkedFor=blinkedFor+1
	else: (3)
	#print("bf",blinkedFor,fps,(fps*.7),int(fps/6.8))
	if (blinkedFor>(fps*.7)):
	print("LONG blink")
	letterArray = letterArray+ "L"
	blinkedFor=0
	elif(blinkedFor>int(fps/6.8)):
	print("SHORT blink")
	letterArray=letterArray + "S"
	blinkedFor=0 (1)
	else: (4)
	notBlinkedFor=notBlinkedFor+1
	#print("no blink")
	if (notBlinkedFor>fps*2):
	print(letterArray)
	if letterArray in MorseCode:
	letterIs=MorseCode[letterArray]
	wordArray.append(letterIs)
	print(wordArray)
	letterArray=""
	letterArray="" (1)
	notBlinkedFor=0
	cap.release()
	cv2.destroyAllWindows()
	out=""
	for i in wordArray:
	out+=i
	print(out)
	from googletrans import Translator
	from gtts import gTTS
	from playsound import playsound
	translator = Translator()
	t=translator.translate(text=out,src="en",dest="hi")
	print(t)
	speak = gTTS(text=t.text, lang="hi", slow=False)
	print(speak)
	speak.save("D:\\captured_voice1.mp3")
	playsound("D:\\captured_voice1.mp3")

	5. SCREENSHOTS
	5.1 Face mesh landmarks
	CMRTC 22
	5.2 Left eye landmarks
	5.3 Right eye landmarks
	CMRTC 23
	5.4 General morsecode
	5.5 morsecode for hello, hello converted to hindi
	CMRTC 24
	5.6 morsecode for egg, egg converted to telugu
	5.7 morsecode for welcome, welcome converted to japanese

	6. TESTING
	6. TESTING
	6.1 INTRODUCTION TO TESTING
	6.2 TYPES OF TESTING
	6.2.2 INTEGRATION TESTING
	6.2.3. FUNCTIONAL TESTING
	6.3. TEST CASE

	7. CONCLUSION
	7. CONCLUSION & FUTURE SCOPE
	7.1. PROJECT CONCLUSION
	7.2. FUTURE SCOPE

	8. BIBLIOGRAPHY
	8. BIBLIOGRAPHY
	8.1 GITHUB LINK
	8.2 REFERENCES

	9. JOURNAL
	Morse code Translator Using Eye Blinks
	Sainath Cheparthy
	Morse code Translator Using Eye Blinks (1)
	Srikar Gangipally
	Morse code Translator Using Eye Blinks (2)
	Pranay Goud Iruvuri

